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Abstract
Physical activity and a healthy lifestyle are crucial factors for delaying and reducing the effects of sarcopenia. 
Cycling has gained popularity in the last decades among midlife men. While the cardiovascular benefits of cycling 
and other endurance exercises have been extensively proved, the potential benefits of lifelong aerobic exercise 
on muscle health have not been adequately studied. Our aim was to quantify the benefits of cycling in terms of 
muscle health in middle-aged men, using magnetic resonance imaging. We ran a cross-sectional study involving 
two groups of middle-aged male adults (mean age 49 years, range 30–65) that underwent Dixon MRI of the pelvis. 
The groups consisted of 28 physically inactive (PI) and 28 trained recreational cyclists. The latter had cycled more 
than 7000 km in the last year and have been training for 15 years on average, while the PI volunteers have not 
practiced sports for an average of 27 years. We processed the Dixon MRI scans by labelling and computing the fat 
fraction (FF), volume and lean volume of gluteus maximus (GMAX) and gluteus medius (GMED); and measuring the 
volume of subcutaneous adipose tissue (SAT). We found that the cyclists group had lower FF levels, a measure of 
intramuscular fat infiltration, compared to the PI group for GMAX (PI median FF 21.6%, cyclists median FF 14.8%, 
p < 0.01) and GMED (PI median FF 16.0%, cyclists median FF 11.4%, p < 0.01). Cyclists had also larger GMAX and 
GMED muscles than the PI group (p < 0.01), after normalizing it by body mass. Muscle mass and fat infiltration 
were strongly correlated with SAT volume. These results suggest that cycling could help preserve muscle mass and 
composition in middle-aged men. Although more research is needed to support these results, this study adds new 
evidence to support public health efforts to promote cycling.
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Introduction
Sarcopenia is the progressive loss of muscle mass and 
function progressively as part of the natural ageing pro-
cess [1–3]. Low levels of physical activity have also been 
associated with increased levels of muscle fat infiltration 
and progressive muscle weakness [4–6]. Therefore, physi-
cal activity and a healthy lifestyle are crucial factors in 
delaying and reducing the effects of sarcopenia. More-
over, larger muscle mass in early life can help to preserve 
muscle function at a later stage of life [7].

For this reason, being physically active before and 
during the onset of sarcopenia can have an important 
impact on later life stages to protect individuals against 
the effects of ageing on muscle health [3]. Cycling has 
gained popularity in the last decade, being one of the 
main physical activities in middle-aged adults [8], who 
are taking up cycling not only due to its physical health 
benefits and low impact, but also because of its effects 
on mental well-being, as shown by Glackin and Beale [9]. 
The benefits of cycling in terms of cardiovascular health 
and fitness have been widely studied [10–17]. For exam-
ple, commuter cycling has been associated with improve-
ments in cardiovascular fitness, reduction of all-cause 
mortality, cancer risk, overweight, and obesity among 
middle-aged individuals [10]. However, the impact of 
long-term cycling on muscle health has not been thor-
oughly explored [18, 19].

Consequently, it is essential to determine if cycling can 
help prevent sarcopenia and to estimate its impact on 
muscle mass and composition, which are markers asso-
ciated with strength and mobility [20–23]. These two 
important muscle health markers can be quantified by 
measuring muscle volume and intramuscular fat (IMF) 
content from magnetic resonance imaging (MRI) [24, 
25].

In this work, we aimed to study the benefits of cycling 
in terms of muscle health by comparing muscle health 
markers of two middle-aged men groups with differ-
ent lifestyles: a group that has adopted cycling as their 
main recreational physical activity and a group of physi-
cally inactive subjects. We obtained Dixon magnetic 
resonance images of the pelvic region of each subject 
and computed the IMF content, muscle mass, and lean 
muscle mass of the gluteus maximus (very involved in 
cycling) and gluteus medius (less involved in cycling).

Methods
Study design
This was a cross-sectional study involving two matched 
groups of middle-aged adults who underwent MRI. The 
first group consisted of trained male cyclists that had 
cycled more than 7000  km in the preceding year. The 
second group consisted of physically inactive (PI) men 
(defined as men doing less than 1 h of physical exercise 
per week) ready to start the UK NHS (National Health 
Service) Couch to 5  K (Cto5K) programme, a running 
plan for absolute beginners. The inclusion criteria for this 
group were less than 1  h of physical exercise per week 
and registration to start the Cto5K programme. Common 
inclusion criteria for both groups were the absence of 
injuries and other health problems, no contraindication 
to MRI, and 30–65 years of age.

We recruited a total of 56 subjects, 28 for the physically 
inactive group and 28 for the cyclists group, who met the 
inclusion criteria. The median cycling experience for the 
latter group was 12 years. Demographic data for each 
group are presented in Table 1.

The volunteers underwent MRI and filled out a struc-
tured questionnaire regarding their physical activity 
levels and lifestyle on the scanning day. The following 
validated questionnaires were used: General Practice 
Physical Activity Questionnaire (GPPAQ), Warwick-
Edinburgh Mental Wellbeing Scales (WEMWBS) [26] for 
mental health, and Hip disability and Osteoarthritis Out-
come Score (HOOS) [27] for hip health as we assess two 
hip muscles. In addition, cyclists were asked about their 
cycling experience.

All subjects provided written informed consent. The 
study was approved by the UCL Research Ethics Com-
mittee (REC) [Number 13,823 /001].

MRI acquisition
All subjects underwent a standardized MRI protocol. 
The MR images were acquired on a 3T scanner (Siemens 
Magneton Vida, Erlangen, Germany) using a body coil. 
The scanning protocol consisted of axial PD TSE Dixon 
and axial T1-weighted images with a field of view (FOV) 
that covered from 2 cm below the lesser trochanter to the 
top of the L1 lumbar spine vertebra. The PD TSE Dixon 

Table 1 Demographics of the two study groups. Mean ± SD 
values are reported

Physically 
Inactive

Cyclists p-value

Demographics Subjects N = 28  N = 28

Age [years] 49.3 ± 10.6 48.0 ± 9.0

Body Mass [kg] 94.6 ± 17.7 77.2 ± 7.7

Height [cm] 179.1 ± 6.5 180.8 ± 6.8

BMI [kg/m2] 29.4 ± 5.0 23.7 ± 2.5

General Health 
Questionnaires

Physical Activity 
(GPAQ*)

I = 12, MI = 4, 
MA = 9, A = 5

 A = 28

WEWBMS† 48.3 ± 8.6 52.7 ± 7.7 p = 0.03

HOOS§ Pain 95.1 ± 7.9 97.7 ± 6.2 p = 0.06

HOOS§ Func-
tion, Daily Living

95.6 ± 7.8 98.8 ± 4.7 p = 0.01

HOOS§ Func-
tion, Sports

92.4 ± 11.7 97.6 ± 5.6 p = 0.10

* General Practice Physical Activity Questionnaire; † Warwick-Edinburgh Mental 
Wellbeing Scales; § Hip disability and Osteoarthritis Outcome Score
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sequence had the following parameters: slice thickness 
2.6 mm, spacing between slices 2.6 mm, repetition time 
(TR) 5590 msec, echo time (TE) 51 msec, number of 
excitations 1, number of echoes 14, flip angle 150°. The 
voxel size was 0.55 × 0.55 × 2.6 mm3.

Muscle health assessment with MRI
We used gluteus maximus (GMAX) and gluteus medius 
(GMED) muscles to evaluate general muscle health, as 
they are essential to maintain an active lifestyle and are 
involved in a wide range of physical activities. Further-
more, GMAX is highly involved during the hip exten-
sion phase of the pedalling cycle [28, 29] but not GMED. 
Hence, we compared the health of a muscle that is 
directly trained by cycling with a muscle not very rel-
evant in this sport. For each muscle, we computed three 
MRI-based muscle health metrics: intramuscular fat 
(IMF) content, muscle mass and lean muscle mass fol-
lowing a similar process to what we have done in previ-
ous studies [6, 30].

To measure the aforementioned metrics, we labelled 
the left and right GMAX and GMED muscles (see Fig. 1) 
using an in-house tool [25, 31] that runs on Simpleware 
ScanIP (Version 2021.3; Synopsys, Inc., Mountain View, 

USA). The tool has already been validated and used in 
other studies [6, 30]. The intramuscular fat (IMF) content 
was quantitatively measured by computing the mean fat 
fraction (FF) on each label from the FF Dixon MR images 
[32–34]. Muscle mass was estimated by summing up all 
voxels within a label and multiplying the results by the 
voxel size. Lean muscle mass was estimated as volume 
multiplied by (1-FF). Both volumetric measurements 
were normalized by the body mass of each subject. All 
the MRI scans were cropped at the tip of the lesser tro-
chanter (LT) to avoid volume differences due to FOV 
mismatches.

Additionally, size profiles were computed from the 
cross-sectional areas (CSA) of each axial slice that forms 
a muscle label. CSAs were also normalized by body mass. 
Profiles for FF and lean CSA were also computed. All 
the profiles (with a different number of slices for each 
subject) were resampled into 50 fixed slices or sampling 
points by applying a linear interpolation as described in 
a previous work [30]. We computed the median and the 
IQR for each slice of the resampled CSAs profiles and 
then estimated the relative percentage difference between 
the two groups.

Fig. 1 Axial and sagittal views of a physically inactive volunteer (top row) and a well-trained recreational cyclist (bottom row). The labels for GMAX, GMED 
and SAT are illustrated for both cases. The two subjects had GMAX fat fraction values of 21.8% and 17.6%

 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 4 of 9Belzunce et al. BMC Musculoskeletal Disorders          (2023) 24:209 

Subcutaneous adipose tissue
We measured the amount of subcutaneous adipose tis-
sue (SAT) in the pelvis region by labelling the SAT on the 
Dixon MRI images and computing its volume (VSAT) and 
normalized volume (NVSAT) by body mass. The labelling 
was performed with an automated algorithm that classi-
fies each voxel into three different classes as proposed by 
Bezrukov et al. [35], and then subtracts a convex hull of 
the non-fat mask from the fat label for each slice.

Statistical analyses
We computed nonparametric descriptive statistics for the 
FF and volume values for each muscle and group, since 
their distribution was not normally distributed (Kol-
mogorov-Smirnov test, p < 0.01). We compared the FF, 
volume and lean volume of the GMAX and GMED mus-
cles, and the SAT volume, for the PI and cyclists groups 
using a Mann-Whitney U test for samples not normally 
distributed. Effect sizes were computed using the r-value, 
defined as Z

/
√

N , where Z is the standardized value for 
the U-value of the test [36]. Effect sizes were classified in 
low (r < 0.3), medium (0.3 < r < 0.5) and large (r > 0.5).

We performed a linear regression analysis between 
cycling (as a categorical variable) and FF and NV. In 
addition, a multiple regression analyses were used to 
adjust for potential covariates. The variables tested were 
BMI, age, weight, NVSAT, hip health (using three HOOS 
scores) and levels of physical activity as defined by the 
GPAQ.

We used a level of statistical significance (α) of 0.05 for 
all the tests.

Results
The PI group had a larger body mass (median 92.5  kg; 
p < 0.01) and a higher BMI (median 28.5 kg/m2; p < 0.01) 
than the cyclists group (median body mass 76.0  kg, 

median BMI 23.7 kg/m2). In the PI group, 16 volunteers 
were classified as inactive, 9 as moderately active and 5 as 
active using the GPAQ scores. All participants reported 
good hip function and health as assessed with the HOOS 
questionnaire, where we only found differences between 
the PI and the cyclists groups for the scores “HOOS 
Function, Daily Living” (Table 1).

We found that the cyclists group had lower levels of 
fat infiltration for the two muscles under analysis com-
pared to the PI group, and had larger GMAX and GMED 
muscles after normalizing the muscle volume by body 
mass. In Table 2, the median (IQR) values of fat fraction, 
volume, normalized volume and normalized lean volume 
are shown for each group, as the well as SAT volume and 
normalized volume.

Intramuscular fat
In Fig. 2A, we show boxplots of FF for each group. The FF 
values were lower for cyclists for GMAX (p < 0.01, large 
effect size r = 0.61) and GMED (p < 0.01, large effect size 
r = 0.69). FF was correlated with BMI (R2 = 0.588, p < 0.01 
for GMAX; R2 = 0.496, p < 0.01 for GMED), the categori-
cal variable PI/Cyclists (R2 = 0.369, p < 0.01 for GMAX; 
R2 = 0.357, p < 0.01 for GMED) and NVSAT (R2 = 0.607, 
p < 0.01 for GMAX; R2 = 0.582, p < 0.01 for GMED).

The multivariate model with highest prediction power 
included BMI and the PI/Cyclists variable as predictors. 
The NVSAT was highly correlated with both predictor 
variables and was excluded from the analysis to avoid 
collinearity. Age, levels of physical activity (as measured 
with the GPAQ) and hip health were not predictors of FF.

The multivariate models for FF prediction were:

 
FFGMAX [%] = −1.3 + 0.7 ∗ BMI + 2.5 ∗ PI

(R2 = 0.629, pBMI < 0.01, pPI = 0.02)

Table 2 Median (IQR) values for GMAX and GMED muscles for the PI and Cyclists groups
Physically Inactive Cyclists p-value

Fat Fraction [%]

GMAX* 21.6 (19.4–25.0) 14.8 (13.3–16.2) p < 0.01

GMED† 16.0 (14.8–17.1) 11.4 (10.5–12.8) p < 0.01

Volume [cm3]

GMAX 804.7 (696.8-914.4) 791.3 (707.6-869.1) p = 0.79

GMED 414.5 (373.1-484.5) 390.2 (359.2-412.4) p = 0.09

Normalized Volume [cm3/kg]

GMAX 8.6 (8.0-9.2) 10.2 (9.5–11.0) p < 0.01

GMED 4.5 (4.3–4.7) 5.0 (4.8–5.2) p < 0.01

Lean Normalized Volume [cm3/kg]

GMAX 6.5 (5.8–7.5) 8.6 (8.1–9.5) p < 0.01

GMED 3.7 (3.5-4.0) 4.4 (4.2–4.6) p < 0.01

SAT§ Volume [cm3] 5071 (3454–6642) 2158 (1858–2791) p < 0.01

SAT Normalized Volume [cm3/kg] 53.2 (42.7–62.7) 29.3 (24.9–34.4) p < 0.01
* Gluteus Maximus; † Gluteus Medius; § Subcutaneous Adipose Tissue
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FFGMED[%] = 4.7 + 0.3 ∗ BMI + 2.4 ∗ PI

(R2 = 0.601, pBMI < 0.01, pPI = 0.01)

Muscle mass
In Fig. 2B C, we show boxplots of NV and LNV (B) for each 
group. NVs were larger for the cyclists than for the PI group 
for both GMAX (p < 0.01, large effect size r=-0.72) and 
GMED (p < 0.01, large effect size r=-0.55). The same was 
observed for the LNV (GMAX, large effect size r=-0.7391; 
GMED, large effect size r = 0.6515).

Normalized muscle volume was correlated with the 
PI/Cyclists categorical variable (R2 = 0.439, p < 0.01 for 
GMAX; R2 = 0.294, p < 0.01 for GMED) and the NVSAT 

(R2 = 0.607, p < 0.01 for GMAX; R2 = 0.582, p < 0.01 for 
GMED), and weakly correlated with BMI (R2 = 0.233, 
p < 0.01 for GMAX; R2 = 0.226, p < 0.01 for GMED).

The multivariate model with highest prediction power 
included the NVSAT and PI/Cyclists variables as predic-
tors of the GMAX normalized volume:

 
NVGMAX = 1148 − 32 ∗ NSAT [cm3] − 1256 ∗ PI

(R2 = 0.629, pNSAT = 0.04, pPI < 0.01)

The correlation coefficients between all the tested vari-
ables and between the main output variables (FF and NV) 
and the predictors are illustrated in Figure S.1 and Figure 
S. 2 of the Supplementary Material. An exploratory data 

Fig. 2 Boxplots of FF (A), normalized volume (B) and normalized lean volume (C) values of GMAX and GMED muscles for each group. On each box, the 
central mark is the median and the edges of the box are the 25th and 75th percentiles. Outliers are plotted individually with circles
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analysis of these variables is shown in Figure S. 3, where 
the differences between the two groups under study can 
be easily seen.

Intramuscular fat and CSA profiles
In Fig. 3, we show axial profiles of GMAX (A) and GMED 
(B) for the PI and Cyclists groups, where the median FF, 
CSA and lean CSA are shown for each axial slice. The 
error bars represent the IQR in each slice. The absolute 
percentage difference between the two groups is shown 
in a dashed line, where the higher FF of the PI group is 
uniform along both muscles. In terms of muscle size, the 
differences were more substantial in the inferior section 
near the lesser trochanter for GMAX and in the superior 
region for GMED.

Discussion
This was a cross-sectional study in which two matched 
groups of middle-aged men were compared. Our objec-
tive was to quantify of cycling on muscle health in midlife 
men. We showed that the cyclists group had lower levels 

of intramuscular fat and greater muscle mass for both 
GMAX and GMED muscles than the physically inac-
tive middle-aged men, with large effect sizes. These are 
relevant findings, as they suggest that cycling, an activity 
that is increasingly popular among middle-aged men [8], 
could be effective in slowing the degradation of muscle 
composition and the loss of muscle mass that is typically 
observed in the ageing population.

Although our results are somehow expected and 
that more research is needed to understand how much 
cycling is needed to observe these outcomes, we pro-
vide important evidence supporting that lifelong aerobic 
exercise can slow the loss of muscle mass and function. 
These are novel results as the research in the preven-
tion of sarcopenia has been mainly focused on resistance 
training as intervention instead of aerobic exercise [19]. 
A previous study showed that the thigh muscle mass of 
highly trained master cyclists was comparable to healthy 
young adults [37], which agrees with our findings regard-
ing muscle mass preservation. In addition, our quantita-
tive metrics from Dixon MRI offer reference values that 

Fig. 3 Axial profiles with median values and IQR error bars for GMAX fat fraction (A), normalized cross-sectional areas (B) and normalized lean cross-
sectional areas (C) for the PI (blue) and cyclists (red) groups. In a purple dashed line and using the left y-axis, the relative percentage difference between 
the two groups is shown for each slice. The profiles go from the origin of GMAX (slice 1) to the level of the lesser trochanter (slice 50, the most inferior slice)
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can be used to study other groups in the future (i.e. com-
muter cyclists instead of the highly/moderately trained 
midlife cyclists of our study).

We focused on only men due to the high cost of MRI 
scans, which allowed us to achieve a good sample size for 
two well-matched groups. Muscle health was assessed 
for GMAX, greatly involved in cycling, and GMED to 
determine if the benefits of cycling were only seen in 
the muscles targeted by this sport. We used Dixon FF as 
a quantitative measure of intramuscular fat, and muscle 
volume normalized by body mass as a measure of muscle 
mass.

IMF levels were associated with a larger volume of SAT 
in the pelvis area, a higher BMI, and not being in the 
cyclists group. The high IMF and pelvic SAT observed in 
the PI group could be potentially associated with meta-
bolic impairment [38]. Despite the lower levels of IMF 
content of the Cyclists groups compared to the PI groups, 
the former had higher levels of fat infiltration compared 
to previously published reference data of the gluteal mus-
cles in healthy active individuals [30, 39]. This could be 
explained by the fact that in our study the participants 
were considerably older. GMAX and GMED muscles had 
different FF range in agreement with previously reported 
values [30, 39].

The larger muscle mass of the cyclists is an expected 
effect of training as muscle volume is associated with 
strength and power [39–42]. Using CSA profiles, we 
found that the size difference was located mainly in the 
inferior section of GMAX, which could be explained by 
the fact that GMAX is heavily involved during the hip 
extension phase of the pedaling cycle [28]. The inferior 
section of GMAX is mainly active during hip extension, 
while the superior section of GMAX is mainly active for 
abduction and external rotation that are not relevant for 
cycling [40]. Although GMED is not particularly targeted 
during cycling, we found meaningful differences between 
the two groups in the superior region of the muscle, 
which could be explained by GMED being active when 
using a more posterior pedal position [28].

The combination of lower IMF and larger GMAX 
and GMED mass in the cyclists groups, translated in 
even larger differences for lean muscle mass (normal-
ized by body mass), a measure that combines muscle 
size (defined as the volume within the muscle fascia) and 
composition. The effect sizes on lean muscle mass of not 
being a cyclist were large for both GMAX and GMED, 
although slightly higher for the former.

A limitation of this work is that we assessed the impact 
of cycling only in the gluteal muscles, which is an impor-
tant muscle group associated with good mobility and 
a reduced risk of falls in the elder population [41, 42], 
but further research is needed to study if this muscle 
group is representative of the overall muscle health of 

middle-aged individuals. A second limitation of this 
study is that the two groups were recruited according 
to their current levels of physical activity. However, the 
volunteers of the cyclists group had been practicing this 
sports for a mean time of 12 years, and most of the PI 
subjects reported a lifelong physical inactivity. Therefore, 
this study compared two groups of midlife men with dif-
ferent long-standing lifestyles, although self-reported. 
A third limitation was that the recruiting criteria were 
based on self-reported physical inactivity, but half of the 
participants in the PI group were classified as moderately 
active or active using the GPAQ questionnaire.

Conclusion
We observed that well-trained midlife recreational 
cyclists had lower levels of fat infiltration and greater 
muscle mass for the two main gluteal muscles when 
compared to physically inactive individuals of the same 
age. This suggests that, in addition to other previously 
reported benefits, cycling could help preserve muscle 
health in middle-aged men. Although more research 
is needed to know at what level and how many years of 
cycling are required to see its positive impact on muscle 
health, this study adds new evidence to support public 
health efforts to promote cycling.
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